
Abstract:
Filesystems continue to be a major performance bottleneck for many applications across a variety of hard-
ware architectures. Most existing attempts to address this issue (e.g., PVFS), rely on system resources that
are not typically tuned for any specifi c user application. Others rely on special hardware capabilities such as
shared-memory.

We have developed an MPI-based Parallel Asynchronous I/O (PAIO) software package that enables applica-
tions to balance compute and I/O resources directly. PAIO uses a queuing mechanism to stage the data, sent
over in parallel from compute nodes, on the reserved I/O nodes. Because the bandwidth of the inter-proces-
sor network greatly exceeds that of the fi lesystem, signifi cant performance improvements can be achieved
under a bursty I/O load provided suffi cient memory is available for the I/O nodes. The results of PAIO for
typical weather applications on an SGI Altix and other architectures are presented.

Goal:
To develop an application-controlled, portable, high-performance I/O library to maximize computing effi ciency.

Background:
Many high-performance computing applications need to write simulation data to disks for analysis in a
short turnaround time. Typically such an operation is constrained by the underlying fi lesystem. The desire
for high-resolution simulations and the trend of rapidly increasing computational nodes further burden the
fi lesystem. The low performance of typical fi lesystems forces compute nodes to idle for a signifi cant time
while writing the data to disks. For example, the NASA Goddard Space Flight Center (GSFC) Cloud Model
(Figure 1) requires 1,913 wall-clock seconds, ~46% of the total simulation time, to write twenty-three 3D
single-fl oating-point arrays of 1024 x 1024 x 41 to one fi le on a disk of an HP AlphaServer SC45 in running
a one-model-hour simulation using 256 CPUs during which six such writes occurred.

Application Controlled Parallel Asynchronous Input/Output
Shujia Zhou1, Amidu Oloso2, Megan Damon1, Tom Clune (NASA-GSFC SIVO)

TM

A TETRA TECH COMPANY

TM

Figure 1: NASA GSFC Cloud Model is capable of simulating the cloud formation process and providing physical input for glob-
al circulation models. The image is one snapshot at Lat 10.14 S x 61.91 W (Brazil) created in a simulation with 256 x 256 x 41 reso-
lution. The area covered is 64 km x 64 km with a maximum height of 22.437 km. The background is imposed with the Landsat satellite data.
Image by James Williams (GST).

PAIO Technical Description:
As illustrated in Figure 4, the process of writing data into a disk is decomposed as:
• Send data from a compute node to a corresponding I/O node
• Store the data in a queue
• Pull the data out of the queue
• Write the data into disks

In addition, a polling mechanism is used between Send–and Receive–operations to support a more fl exible
mode of operation. Moreover, the code is written in MPI to ensure portability and Fortran 95 to provide a
user-friendly interface. Finally sending data in parallel from multiple compute nodes to the corresponding
I/O nodes is implemented to aggregate the bandwidth of the inter-processor network.

Results:
We have performed a series of performance tests using our application-controlled PAIO for an output pattern
typical of weather and climate applications. Namely, 10 single-precision arrays of 1440 x 720 x 70 (~290 MB
per array) are written to a disk consecutively. A test run on the GSFC SGI Altix, which has unidirectional
internal network bandwidth of 3.2 GB/s and 2 GB of memory per processor, shows that the speed of writing
these arrays to a disk with a single processor is ~298 MB/s. By using PAIO, data is sent from a compute node
(Process 0) to the I/O node (Process 5) at 590 MB/s. By eliminating unnecessary data copies, we further im-
proved the performance to ~735 MB/s, which is a 2.5X improvement over the direct disk performance. Since
the total size of the 10 arrays exceeds the available memory on a single node of the HP AlphaServer SC45,
we performed a smaller test with just eight arrays of slightly smaller size (~1.37 GB total) on that platform.
With PAIO, we achieved ~121 MB/s, which is a 3X improvement over writing data directly to a disk. To
further exploit inter-processor bandwidth, PAIO has the capability of using multiple I/O nodes to cache the
data. In the above confi guration with eight arrays, we observe speedups of 1.7X and 2.3X by using two and
three I/O processors, respectively.

Conclusion:
The results clearly indicate that our application-controlled PAIO library is capable of considerably increas-
ing I/O performance.

Next Steps:
• Investigate variations of communication strategies for sending data to the I/O nodes
• Enable use of netCDF to support common data format
• Enable use of MPI I/O to further optimize management of distributed data
• Use PAIO in production codes to measure real benefi t to the end user

Acknowledgments:
We would like to thank the NASA Center for Computational Sciences (NCCS) for access to the Explore
SGI Altix supercomputer, and John Dorband (NASA GSFC) for his suggestion on the system caching
mechanism of PVSF-1 and for his assistance in using the NASA Thunderhead cluster. We would also
like to thank Wei-Kuo Tao (NASA GSFC) for providing the NASA GCE code and Xiping Zeng (UMBC) for
assistance in using the code.

PVFS-1 Preliminary Examination:
We have examined the performance of PVFS-1 using one storage node on the NASA Thunderhead cluster
(Figure 2). The purpose of our experiment was to test the buff ering capability of the I/O nodes, not the disk
performance. The test application written in Fortran was executed on one compute node. To bypass the
limitation of local memory (i.e., 1 GB) on the compute node, the application writes 20 small 1D Fortran
arrays to the I/O node.

As indicated in Figure 3, the buff ering capability does alleviate the I/O bottleneck on the Thunderhead clus-
ter. We observed that once the total data size reaches ~1.35 GB, which is 67.5 % of the memory on the I/O
node (i.e., 2 GB), a sharp decease in write performance occurs: from ~72 to ~55 MB/s. We conjecture that
the performance drops precipitously at the point where the data volume exceeds the available buff er cache.

Approach:
• Move data out of compute nodes to I/O nodes via inter-processor network

Harness the bandwidth of the inter-processor network, which greatly exceeds that of the fi lesystem
• Allow a user to determine when to send the data which to I/O nodes and when to fl ush the data into the disks

Balance the bandwidth of the inter-processor network, the number of I/O nodes, the memory size of the
I/O node, and the disk speed

• Use queuing mechanism to optimize the amount of data in I/O nodes
Cache data according to available memory in I/O nodes

−

−

−

Figure 2: The schematic of PVFS-1 confi guration on the NASA Thunderhead cluster.

Figure 3: The throughput of PVFS-1 on the NASA Thunderhead cluster as a function of data size.

Figure 4: The system architecture of the application-controlled parallel asynchronous I/O.

1 - Northrop Grumman Corporation
2 - Advanced Management Technology, Inc.

